## Neonatal Sepsis in India: Diagnosis and management guidelines

Delhi NeoCon Oct 2020

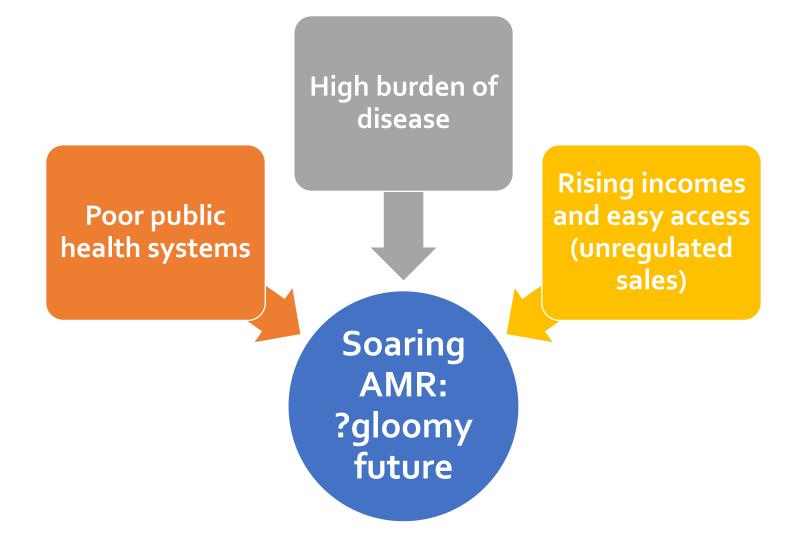

# Outline

- 1. Diagnosis:
  - How to differentiate sepsis from common mimickers: role of clinical features, biomarkers (including sepsis screen)
  - Key step: must take blood culture before starting antibiotics
- 2. Prevention:
  - Remains the most critical step to reduce mortality: CFR remains higher even in those pathogens susceptible to antibiotics
  - Antibiotic stewardship: CDC guidelines
  - Creating unit specific antibiotic policy- to guide first line empiric therapy and beyond
  - Newer modalities: probiotics, etc?

# Outline

- 3. Treatment:
  - Empiric therapy → definitive therapy
  - De-escalaltion; escalaltion: when and why
  - When to stop antibiotics: PCT vs expectant management
  - Choices in MDR empiric treatment
  - Duration of therapy
  - Status of adjunctive therapy- probiotics, etc?
  - Beyond antibiotics: key role of supportive therapy, barrier nursing, isolation
- 4. Key words and messages

# Sepsis in India: Issues










#### Indian context- convergence of factors



# How do we deal with this situation?

- **PREVENTION**, is naturally the key
- Therefore, today's time the time in hand- is the best time to act





## Prevention

| Pathogens                 | Antimicrobial class | Resistance      | CFR in culture positive sepsis due to |                       |  |
|---------------------------|---------------------|-----------------|---------------------------------------|-----------------------|--|
|                           |                     |                 | Resistant pathogens                   | Sensitive pathogens   |  |
| Gram-negative             |                     |                 |                                       |                       |  |
| Klebsiella spp. (n= 169)  | ES cephalosporins   | 105/169 (62.1%) | 57/104 (54.8%)                        | 38/65 (58.4%)         |  |
|                           | Carbapenems         | 59/169 (34.9%)  | 36/59 (61.0%)                         | <u>59/110 (53·6%)</u> |  |
|                           | MDR                 | 91/169 (53.8%)  | 52/91 (57.1%)                         | 43/78 (55.1%)         |  |
| Acinetobacter spp. (n=    | ES cephalosporins   | 85/222 (38.3%)  | 59/85 (69+4%)                         | 71/137 (51-8%)        |  |
| 222)                      | Carbapenems         | 174/222 (78.3%) | 106 / 174 (60.9%)                     | 24/48 (50.0%)         |  |
|                           | MDR                 | 181/222 (81.5%) | 112/181 (61.8%)                       | 18/41 (43.9%)         |  |
| Escherichia coli (n= 137) | ES cephalosporins   | 65/137 (47.4%)  | 40/64 (62.5%)                         | 43/73 (58.9%)         |  |
|                           | Carbapenems         | 21/137 (15.3%)  | 12/21 (57.1%)                         | 71/116 (61.2%)        |  |
|                           | MDR                 | 52/137 (37.9%)  | 30/52 (57.6%)                         | 53/85 (62.3%)         |  |
| Pseudomonas spp. (n= 68)  | ES cephalosporins   | 32/68 (47.0%)   | 29/32 (90.6%)                         | 24/36 (66.6%)         |  |
|                           | Carbapenems         | 21/68 (30.8%)   | 19/21 (90.4%)                         | 34/47 (72.3%)         |  |
|                           | MDR                 | 13/68 (19.1%)   | 11/13 (84.6%)                         | 42/55 (76.3%)         |  |
| Enterobacter spp. (n= 44) | ES cephalosporins   | 20/44 (45.4%)   | 6/20 (30.0%)                          | 10/24 (41.6%)         |  |
|                           | Carbapenems         | 9/44 (20.4%)    | 4/9 (44 • 4%)                         | 12/35 (34.2%)         |  |
|                           | MDR                 | 22/44 (50.0%)   | 8/22 (36.3%)                          | 8/22 (36.3%)          |  |
| Gram-positive             |                     |                 |                                       |                       |  |
| Coagulase negative        | Methicillin         | 85/140 (60.7%)  | 23/85 (27.0%)                         | 14/55 (25.4%)         |  |
| staphylococci (n=150)     | Vancomycin          | 0/138           | -                                     | 36/138 (26.0%)        |  |
| Staphylococcus aureus     | Methicillin         | 43/114 (37:7%)  | 16/43(37:2%)                          | 22/71 (30.9%)         |  |

#### **Resistant vs. sensitive:**

**CFR almost the same despite app. treatment!!** 

# Prevention: CDC: 12 steps

#### Hand hygiene

Infection control

Stop treatment

Know when to say 'no'

Don't treat colonization

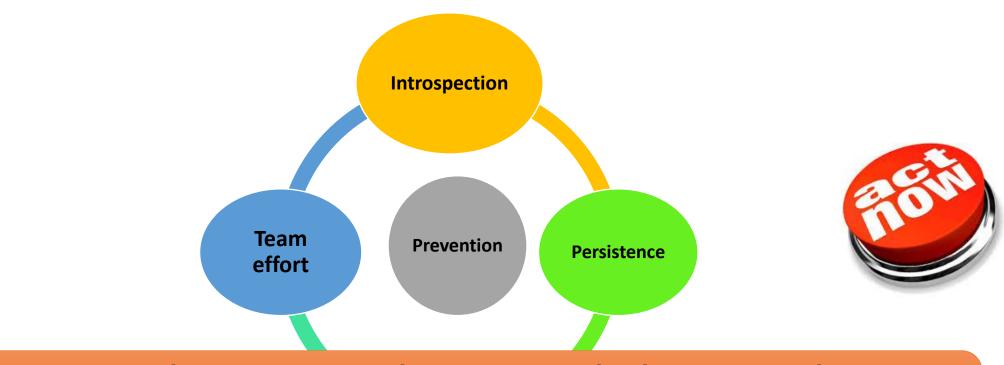
Use local data

Practice antimicrobial control

Access the experts

Target the pathogen

Use proper diagnostic methods


Get catheters out

Vaccinate

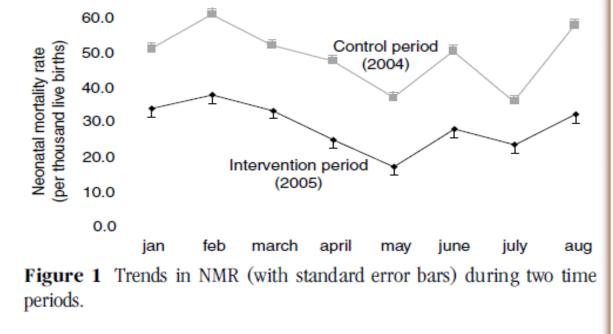
CDC 2002

## How do we deal with this situation?


• **PREVENTION**, is naturally the key



In essence, this is an endeavour in behaviour change, bolstering innate human virtues

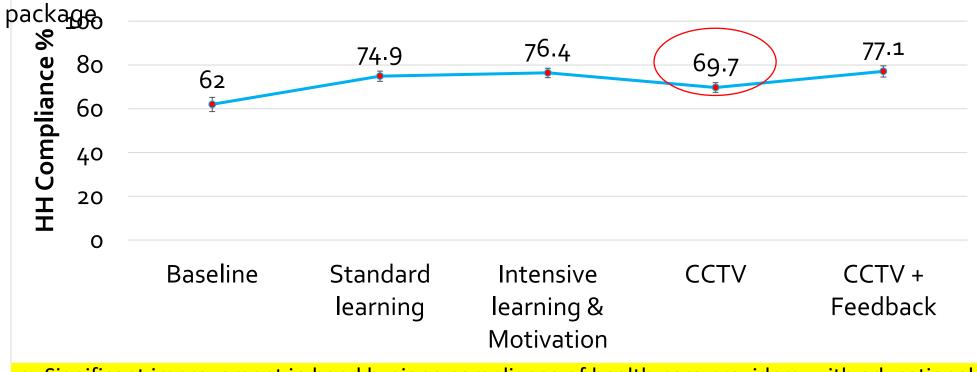

### Prevention: Simple 'bundles'

- Rational admission policy
- Shortened NICU stay
- Curbing of 'routines'
- Asepsis routines
- Aggressive enteral nutrition
- Rational antibiotic therapy
- Training of nurses



### Prevention: Simple 'bundles'

- Rational admission policy
- Shortened NICU stay
- Curbing of 'routines'
- Asepsis routines
- Aggressive enteral nutrition
- Rational antibiotic therap
- Training of nurses

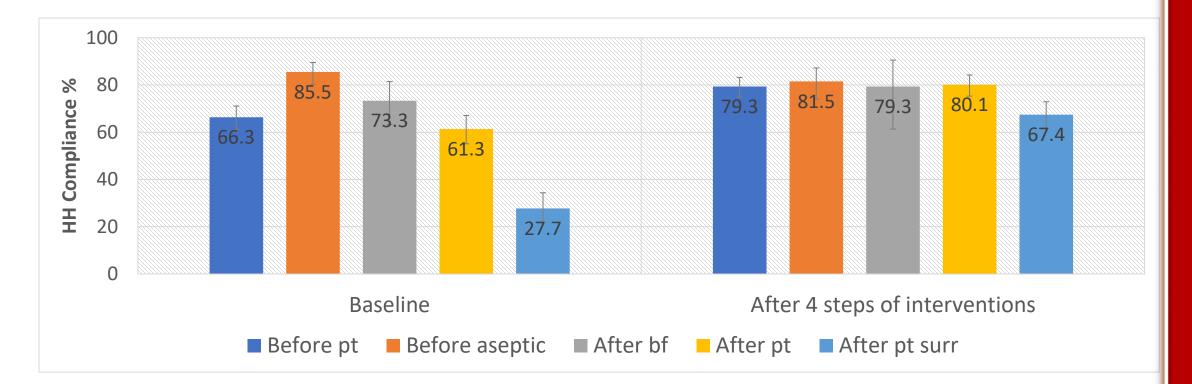



### NMR reduced by 40%

Agarwal 2007

# Hand hygiene: compliance

- WHO-5 campaign of HH compliance : system change, training and education, observation and feedback, reminders in the hospital, and a hospital safety climate.
- A meta-analysis among HCPs, mean OR (95% credible interval) improvement compared with no intervention were 4.30 (0.43 to 46.6) and 6.51 (1.58 to 31.9) for single intervention and whole




Luangasanatip

et al 2015, Shridhar et al 2015

- Significant improvement in hand hygiene compliance of health-care providers with educational interventions
- Feedback remains an important modality for behaviour change besides monitoring (CCTV).

# Hand hygiene: compliance



- Also keep a watch at WHO's 5 moments; keep a deeper perspective
- Persist with continued training

Ρ Ε R S Ι S T Ε Ν С Ε

# Antimicrobial stewardship

- 1. Timely antibiotic management
- 2. Appropriate selection- Antibiotic policy
- 3. Appropriate administration and de-escalation
- 4. Availability of expertise at the point of care
- 5. Data monitoring and transparency

### Recent evidence: reduction in emergence of MDR-GNB by 51%

# Antimicrobial stewardship (ASP)

C3-,~~ CU

DEPARTMENT OF PEDIATRICS ALL INDIA INSTITUTE OF MEDICAL SCIENCES



#### ANTIBIOTIC POLICY

#### ANTIBIOTIC FORMULARY AUTHORIZATION POLICY



#### 🕻 🛛 🖉 🛤

**Department of Pediatrics** 

AIIMS, New Delhi

#### **Antibiotic Formulary Authorization Policy**

|                             | Antibiotic           | Authorization by           |  |
|-----------------------------|----------------------|----------------------------|--|
| 1. Colistin                 |                      | Unit Head + Head of Deptt. |  |
| 2. Tigecycline              |                      | Unit Head                  |  |
| 3. Aztreonam                |                      | Unit Head                  |  |
| 4. Ertapenem                |                      | Unit Head                  |  |
| 5                           | . Vancomycin         | Consultant on call/ round  |  |
| 6                           | . Teicoplanin        | Consultant on call/ round  |  |
| 7.                          | Linezolid            | Consultant on call/ round  |  |
| 8.                          | Meropenem            | Consultant on call/ round  |  |
| 9. Imipenem                 |                      | Consultant on call/ round  |  |
| 10. Cefoperazone-sulbactam  |                      | Consultant on call/ round  |  |
| 11. Piperacillin-tazobactam |                      | Consultant on call/ round  |  |
| 12                          | . Clindamycin        | Consultant on call/ round  |  |
| 13                          | . Cefepime           | Consultant on call/ round  |  |
| 14.                         | Ceftazidime          | Consultant on call/ round  |  |
| 15.                         | Ceftriaxone          | Senior Resident            |  |
| 16.                         | Cefotaxime           | Senior Resident            |  |
| 17.                         | Ceftazidime          | Senior Resident            |  |
| 18.                         | Amox-clavulanic acid | Senior Resident            |  |
| 19.                         | Aminoglycoside-      | Senior Resident            |  |
|                             | gentamicin, amikacin |                            |  |
| 20.                         | Ciprofloxacin        | Senior Resident            |  |
| 1.                          | Ofloxacin            | Senior Resident            |  |
|                             |                      |                            |  |
|                             |                      |                            |  |

ASP



Department of Pediatrics All India Institute of Medical Sciences New Delhi

#### **Antibiotic Policy**

Ver 1.0

Start Here

Developed by Aditya Nagori for the Antibiotic Stewardship Program, Department of Pediatrics, AIIMS, New Delhi

## Key concepts

Prevention of MDR infection must be the cornerstone

Prevent infections (with *introspection and persistence*)

- Simple 'bundles'
- Hand hygiene

Appropriate treatment (with *patience* and *team work*)

- Antibiotic policy
- Antimicrobial stewardship
- Accurate diagnosis
- Use biomarkers wisely

## ASP: Appropriate Treatment

| ESBL+ GNB                | Carbapenems                                                                  |
|--------------------------|------------------------------------------------------------------------------|
| Carbapenem-resistant GNB | Ciproflox;<br>Carbapenem + AG or ciproflox or<br>colistin<br><b>Colistin</b> |
| XDR GNB                  | Co-trimoxazole<br>Chloramphenicol                                            |
|                          | Fosfomycin<br>Tigecycilne                                                    |

## ASP: accurate diagnosis- hematological

| Table 1   Performance of hematological findings and a hematological scoring system   in 298 neonates evaluated for sepsis during the first postnatal month <sup>55</sup> |                    |                    |                                     |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------------------------|-------------------------------------|
| Hematological<br>Finding                                                                                                                                                 | Sensitivity<br>(%) | Specificity<br>(%) | Positive<br>Predictive<br>Value (%) | Negative<br>Predictive<br>Value (%) |
| ↑ I:T ratio <sup>a</sup>                                                                                                                                                 | 96                 | 71                 | 25                                  | 99                                  |
| ↓ or ↑ neutrophil countª                                                                                                                                                 | 96                 | 61                 | 20                                  | 99                                  |
| Immature:mature ratio $\geq$ 0.3                                                                                                                                         | 93                 | 81                 | 32                                  | 99                                  |
| ↑ immature neutrophil count <sup>a</sup>                                                                                                                                 | 63                 | 69                 | 17                                  | 95                                  |
| ↓ or ↑ white cell count <sup>b</sup>                                                                                                                                     | 44                 | 92                 | 36                                  | 94                                  |
| Neutrophil degenerative changes $\geq 3 + c$                                                                                                                             | 33                 | 95                 | 39                                  | 93                                  |

### **Poor PPV:**

Not sure of infection!

### ASP: accurate diagnosis- CRP

|             | ANC*<br><5580/mm3 | I/T * > 0.2 | CRP > 1.0 mg/dL | WBC<5000/mm <sup>3</sup><br>I/T > 0.2 & CRP<br>> 1.0 mg/dL |
|-------------|-------------------|-------------|-----------------|------------------------------------------------------------|
| Sensitivity | 48                | 90–100      | 70–93           | 100                                                        |
| Specificity | 73                | 30–78       | 78–94           | 83                                                         |
| PPV         | 4                 | 11–51       | 7–43            | 27                                                         |

- Use adjunct tests to **RULE-OUT** sepsis!
- Do NOT use to 'rule-in' (diagnose) sepsis

High NPV!

# Upcoming strategies- what lies ahead

# **STOP** antibiotics! PCT: How best to use?

- 2 serial PCTs
  - 24 h after initial evaluation
  - 24-48 h after the first
- Both negative
- Clinical course not suggestive
- Cultures sterile

•*Stocker 2010- single centre study, n=121:* the standard group and the PCT group (absolute risk reduction 27%; odds ratio 0.27 (95% CI 0.12-0.62), p = 0.002).

- •On average, PCT-guided decision-making resulted in a shortening of 22.4 h of antibiotic therapy
- •*Stocker 2017- multicentric- RCT, n=1710:* For PCT group, the duration of therapy was reduced (intention to treat: 55·1 vs 65·0 h, p<0·0001; per protocol: 51·8 vs 64·0 h; p<0·0001)

Н

0